
Santosaputri. AsTMa! Tutorial

Proceedings of the First Australian Undergraduate Students’ Computing Conference, 2003

 page 123

ASTMA! TUTORIAL

Erica Santosaputri 1
1 School of Information Technology, Bond University

EXTENDED TUTORIAL ABSTRACT

This tutorial provides an introduction to AsTMa!, a topic map constraint language. The language allows
topic map authors to define the rules to be enforced towards topic map documents. The language
uses logic operators and patterns based on the topic map paradigm. This tutorial is prepared for those
with basic understand in the Topic Maps concept as well as the topic map authoring language.
AsTMa! is bundled with an automated validator to ensure that the topic map document created follows
the rules defined.

AsTMa! is built as an extension of AsTMa= (the authoring language), featuring logic operators like
NOT, AND, and OR, simple logical quantifiers and regular expressions. AsTMa! also defines open and
closed patterns. In open maplet patterns, denoted by brackets pair […], additional information is
allowed; while in closed maplet patterns, denoted by reversed brackets pair]…[, an exact match is
required. Three types of constraints that can be defined are: existence quantified constraints,
conditional quantified constraints, and Boolean quantified constraints.

Existence quantified constraints ensures that there has to be at least one part within the topic map
document that satisfies the rules. Example:

Scenario: A topic map is to be constructed with main topic programming languages. Within the
document, we need to ensure that the language java is included, which is a type of programming
language, and it has a basename Java Language. This constraint is written in AsTMa! as:

exists [java (programming-language)
 bn: Java Language]

The brackets pair […] shows that it is an open maplet pattern constraint, where additional information
is allowed. Therefore the following topic map document (written in AsTMa=) conforms the constraint:

java (programming-language)
bn: Java Language
in: Java is a programming language that has been used extensively

Associations in topic map may also be constrained. Here is an example of such a constraint:

exists] (compiler-for-the-language)

 compiler: jbuilder
 language: java [

The above constraint ensures that the association of type compiler-for-the-language exists in the topic
map document, and the association must have two players (indicated by the closed maplet pattern).
The player jbuilder plays the role compiler, and the other player java plays the role language, no
additional members are allowed here.

Conditional quantified constraints allow constraints to be enforced to submaps rather than the whole
topic map document. The keyword used to denote the first condition clause is forall, and it has to be
ended by an existence quantified constraint with the keyword exists.

Here is an example of a conditional quantified constraint:

forall [$a (programming-language)
 bn: /language/i]

Santosaputri. AsTMa! Tutorial

Proceedings of the First Australian Undergraduate Students’ Computing Conference, 2003

 page 124

=> exists [(compiler-for-the-language)
 compiler: *
 langugage: $a]

Note the use of the variable $a in the above constraint. Variables in AsTMa ! must start with a ‘$’ sign
and these variables may be used to mediate matched values between clauses. The first clause with
the keyword forall will try to match all possible submaps, using these submaps the inner clauses will
be evaluated.

AsTMa! also allows the use of structural variables. These variables will be bound to submaps which
satisfy the constraints. Here is an example of structural variables being used:

forall $a [(compiler-for-the-language)]
=> exists $a] (compiler-for-the-language)
 compiler: jbuilder | visualj
 language: java [

The variable $a will be bound to a submap containing the matched association. The validation of the
inner constraint will then be applied to that submap only, not to whole topic map. The inner clause will
check whether within the same submap $a, there exists an association as defined by the existence
quantified constraint. In this case, the constraint is satisfied.

Boolean quantified constraints allow combination of constraints with using the Boolean operators AND,
OR, and NOT. The operator NOT may only be used for existence quantified constraints. The boolean
operator NOT is suitable to forbid specific patterns. The following constraint ensures that within the
topic map document a topic or association that follows a particular pattern does not exist:

not exists [* (programming-language)
 bn: /perl/i]

The boolean operators AND and OR may be used anywhere in between parts of constraints. For
example, they can be used in between existence quantified constraints as shown below. Not how the
indentation is used to give or the higher precedence:

forall $a [(compiler-for-the-language)]
=> exists $a] (compiler-for-the-language)
 compiler: jbuilder
 language: java [
 OR
 exists $a] (compiler-for-the-language)
 compiler: visualj
 language: java [

When combined with boolean operators, the individual constraints above will then be processed as
one block. The validation mechanism will check whether the Topic Map document given satisfies all
(and) or some (or) of the constraints in that one block.

A blank line is used to separate each block of constraints. Each of these blocks of constraints will be
processed in turn, so that they are implicitly AND-ed, although they cannot share variables. Depending
on the validation implementation it may flag which block of constraint is violated by a particular topic
map document.

Summary

AsTMa! is a language to express rules for topic map authors. Rules apply to whole maps, so
quantifiers like forall and exists help to precisely impose constraints based on particular patterns.
These patterns are similar to AsTMa= topics and association, but are extended to allow regular
expressions where normally topic ids or text is allowed. To fine tune the required form of a topic or an
association the knowledge engineer has to define whether the pattern is to be interpreted in a closed,
restrictive way, or, alternatively, whether a conforming map can contain more information than is
prescribed (open).

