
Carr et al. Simulation and Representation of Dust Clouds

A STUDY OF SIMULATION AND REPRESENTATION METHODS
OF DUST CLOUDS FOR REAL-TIME GRAPHICS APPLICATIONS

David Carr1, Jim Geyer1

1Charles Sturt University

ABSTRACT: In 3D computer graphics applications, it is often desirable to simulate and
visualise the effects of various natural phenomena, such as clouds of dust and smoke. To
date, the techniques used in most real-time graphics applications (eg. computer games) for
modelling such clouds centre around the use of flat, pre-drawn sprites, layered onto the screen
as ‘billboards’. While this can produce an adequate effect, it is not a very realistic
representation. We develop and compare some alternative approaches to modelling and
rendering a dust cloud, including a particle system approach, and volumetric representations
based on a voxel grid and an octree space division method. These are compared on grounds
of aesthetic results and performance of the algorithm, and a consideration of the breadth of
possibilities for further development and enhancement.

INTRODUCTION

As computers and their graphics systems become faster, in many virtual environments and simulation
applications, such as computer games, it is often desirable to simulate many natural phenomena in
real-time. To date however, clouds of airborne particles, such as dust and smoke, have not been
simulated accurately in these applications, and there is a lack of published modelling and simulation
techniques for realistic dust behaviour [CFW00].

This paper presents a preliminary investigation of some methods that are or might be used for
representing the body of a dust cloud (as generated by a moving vehicle on an unpaved surface) in a
computer graphics application, and rendering the results to the screen. Three different approaches
were experimented with: a simple particle system where the cloud is rendered utilising billboarded
polygons; a more complex particle system that corresponds intuitively to real particles in the dust
cloud; and volumetric systems that attempted to represent and render the volume of the cloud.

TESTBED

To run the models in a practical setting, a computer program was developed that displayed a vehicle
on an empty plain (scale size 1 sq. kilometre). The user interacts with the program via the keyboard
to 'drive' the vehicle around, and manipulate the camera to view the 3D scene. The programming
language used is C++ for the Win32 platform, using the DirectX 9 API for 3D graphics operations.
The programs were tested on two different PCs running Microsoft Windows XP: a Pentium 4 2.0GHz
with an NVIDIA GeForce4 Ti4400 graphics card and a Pentium 4 1.3GHz with NVIDIA GeForce3
graphics card (all figures quoted in main text are from the first system). The core program was
structured according to an object-oriented paradigm, so that alternate dust models could be coded as
classes and dropped-in to the basic framework; in its standard, un-specialised guise, the core
program was capable of running at 450+ frames per second on the P4 2.0GHz/GeForce4 system.

BILLBOARDED SYSTEM (SIMPLE PARTICLE SYSTEM)

In 3D computer graphics applications, a billboard object is one that is rotated to always face the
camera (the user's viewpoint) when rendering. They are typically used to display a 2-dimensional
image texture-mapped to a rectangular polygon surface; this polygon is then rotated to always face
the viewer. Billboards have long been used in real-time graphics applications and computer games
as a fast and simple means of rendering visual effects that would be too complex using other methods
– including clouds of dust or smoke. The typical approach is to use a pre-drawn image representing a
‘puff’ or small cloud of dust for each billboard, making use of transparency and alpha-blending for
realism. Multiples of these billboards can then be scaled and arranged into a variety of
configurations, to produce clouds of any size and shape that also move and change over time.

Proceedings of the Second Australian Undergraduate Students’ Computing Conference, 2004

page 17

Carr et al. Simulation and Representation of Dust Clouds

Figure 1. View of the basic application display. (This exact screenshot is of
the application employing the volumetric octree dust system, hence some
specialised on-screen labels; the ‘core’ program described omits these but
is otherwise identical in general appearance.)

Figure 2. Screenshots of the billboard dust cloud system in action: (left) at
27km/h simulated car speed; (right) at 135km/h simulated car speed.

For our application, we implemented a billboard method of dust rendering using a simple particle
system, consisting of ‘emitters’ (the sources of the particles), and the particles themselves. The
particles have attributes including current location, a random velocity, and age; a particle remains
active in the system until its age reaches a specified limit. Four emitters follow the locations of the
vehicle's tyres, spawning new particles into the system as the car moves; the cloud is rendered simply
by drawing a textured billboard at the location of every particle. A quicksort algorithm was used to
perform depth-sorting on the billboards to prevent artefacts occurring during rendering, and a quick
cull test was included to discard those billboards that are behind the camera.

Although this was not a highly sophisticated or polished implementation of the billboard-cloud method,
the visual results are consistent with the effects seen in most games; performance-wise the
application consistently performed above 200 fps at the maximum particle count. The screenshots in
figure 2 demonstrate the visual drawbacks inherent in the billboard cloud system. In the low-speed
case, the billboards are clustered together in a way that suggests a single cloud, though it can still be
identified as being made up of many instances of the same circular puff texture. However, in the
high-speed case they are strung out over a long line, and give a much less convincing appearance.
Both renderings also exhibit the occlusion of the billboard polygons intersecting with the ground
surface, which further highlights the individual puffs and degrades the visual effect of the cloud.

Proceedings of the Second Australian Undergraduate Students’ Computing Conference, 2004

page 18

Carr et al. Simulation and Representation of Dust Clouds

LITERAL PARTICLE SYSTEM

The previous application used a particle system to represent the positions of billboards. From this we
may suppose we could obtain more realistic results by using more particles in a finer-grained system
to correspond more closely to the individual particles of real cloud. (Hence the term ‘literal’ used here
to name the model, as the particle system is drawn directly to represent the dust cloud.) For this we
implemented a system based very loosely on the model developed by [CFW00]. Again in this model,
we use four emitters at the vehicle wheel locations; to ensure a smooth stream of new particles under
low frame rates, initial positions are interpolated between the emitters’ frame-by-frame locations.
Additionally, particles also now have a colour component, used to render each as a point on the
screen; as the particle ages, the alpha-blending component of its colour value is modified to make it
fade away. Although we avoided the detail and actual physics presented by [CFW00], some simple
algorithms were added to (roughly) represent airflow, by modifying the velocities of particles in close
proximity behind the moving car in the direction of travel, relative to the car’s present speed.

Particles were spawned from the emitters at a rate scaled by the car’s speed; at maximum capacity it
produces a cloud made up of approximately 36,000 particles. Performance at idle was a reduced
390fps; at two-thirds of capacity (about 24,000 particles) it ran just below 160fps, and at the maximum
it ran at around 120fps. A limitation of rendering the particle cloud as points on the screen, is that the
cloud does not appear the same when viewed from different distances: with the viewpoint close or
within the particle cloud, the volume of the cloud occupies a large area of the screen and the tiny
particles are drawn widely spaced out; conversely, as the viewpoint is moved away, the particles are
drawn into a smaller area of the screen, making the cloud appear denser. An attempt was made to
implement a culling algorithm to scale the number of particles rendered relative to the view distance;
however, the calculation to obtain distance of each particle and decide whether to keep it in the
drawable set proved too costly – almost exactly halving performance – and so was not used.

Figure 3. Screenshots of the particle dust system in action: (top) cruising at
29km/h simulated car speed; (bottom) drifting particles have their velocities
perturbed as the vehicle crosses back through the cloud while accelerating.

VOXEL-BASED VOLUMETRIC SYSTEM

The attempt here was to start a new line of development by modelling the dust cloud as a volume,
rather than base the whole representation on a particle system. A three-dimensional grid of cubic
volume elements (voxels) is created over the terrain, each voxel representing the density of airborne
dust at that location. For simplicity at the preliminary stage, the individual voxel cells were rendered
as coloured and alpha-blended (untextured) square billboards; depth-sorting of the billboards was
never implemented. The first problem to be encountered was the exceptionally vast amount of
memory required for even a simple voxel grid; for this sample application, we restricted to voxels of
size 0.5 metres, covering only a relatively small area – 200m square – at the centre of the terrain.

Proceedings of the Second Australian Undergraduate Students’ Computing Conference, 2004

page 19

Carr et al. Simulation and Representation of Dust Clouds

To make a cloud spread throughout the voxel grid, a greatly simplified method of having the value at
one voxel forming the inputs of its neighbours, inspired by [MDCN03], was employed. As the vehicle
moves around the world, the voxels corresponding to the locations of its wheels have their density
value increased relative to its speed; subsequently, each active voxel (those with a density value
above a certain threshold) would 'bleed' density into its neighbours so that the density ‘cloud’ will grow
and disperse over time. This simple premise led to a protracted juggling act trying to find scaling
factors to make the cloud grow into new voxels at a pleasing rate, yet not lose stability; the result was
to use a fade rate slightly higher than six times that of the dispersing rate.

Figure 4. Screenshot of the voxel dust system in action, at 52km/h
simulated car speed.

This led to finding a second major drawback of the model: because each active voxel can affect up to
six of its neighbours, as the number of active voxels increases, so the amount of computation rises
roughly sixfold. From an idle 450+ fps, the performance of the application drops sharply to around
120fps when 500 voxels are being calculated, and 60fps for 1000 voxels; dropping below 25fps when
the number of voxels reached a recorded maximum of about 2400.

OCTREE-BASED VOLUMETRIC SYSTEMS

Given the space constraint problems posed by trying to work with a 'dumb' voxel grid, the use of an
octree structure was investigated as a 'smarter' means of partitioning the world space. Given a 3-
dimensional volume, an octree subdivides along the three axes to produce eight cubes; any or all of
those cubes may themselves be subdivided into a further eight cubes, and so on down to the required
depth of the tree [Hum01]. Because an octree structure only describes those voxels that make up the
shape we are interested in, they are very space efficient when most of our volume space remains
empty [Sto03].

Octree System 1 – Recursive Construction

For this application, a particle system was chosen to model the underlying behaviour of the dust
cloud; since the octree is used to describe the volume of the cloud, the particle system is relatively
low-density but otherwise works in the same way as those used in the previous models. The octree is
able to cover the entire 1km square terrain piece, and does so to a depth of 12 levels, meaning the
voxels at the bottom level have cubic dimensions of approximately 0.25 metres. Because the dust
cloud is not static, the octree must be reconstructed every frame cycle; this is done by a recursive
process of testing the location of each particle and assigning them to lists down the levels of the tree.
As particles age, this recursion stops at larger-volume cells progressively higher up the tree,
representing the expansion of the cloud over time. For simplicity, the octree cells were rendered as
textured billboards; the billboard list was built up at the same time the octree is constructed (and
implicitly, traversed). The opacity of a cell (or rather that of its attendant billboard) is varied according
to the age of the particle(s) it contains to fade away over time.

Proceedings of the Second Australian Undergraduate Students’ Computing Conference, 2004

page 20

Carr et al. Simulation and Representation of Dust Clouds

Dividing the world into this hierarchy of cubes presupposes that we may cunningly use this to perform
our depth-ordering of billboards by traversing the octree according to a particular order or algorithm
[Ste96]; however, this turned out to be more complicated than initially thought (due to variant viewing
angles within the octree space), and was never fully implemented in the application.

Because the main work of this application centres on constructing the octree representing the volume
of the dust cloud, the performance of the system varies as to the amount of ground covered by the
cloud. At idle, with the vehicle stationary and no particles in the system, the application ran at 450+
fps. With the vehicle travelling at 25km/h, it produced a short cloud behind it of approximately 180
particles and utilising 170 nodes in the octree, and the frame rate was an indicated 260 fps. At 50km/h
it produced a cloud twice as long, using approximately 350 particles / 330 nodes for 180fps; at
100km/h it used 500 particles / 600 nodes for 130fps; and at its maximum speed of 180km/h, the
cloud several hundred metres in length used approximately 450 particles / 700 nodes, at 120fps.

The resultant effect of the system (albeit without proper depth-buffering) was pleasing. Because the
voxels occupy discrete positions in the world space, this can lead to some ugly ‘popping’ of billboards
between cells, rather than the smooth motion described by the particles. However, the octree system
creates more cohesive cloud volume than either of the earlier billboard or particle-oriented systems.

Octree System 2 – Search-Principle Construction

It is a feature of the octree structure that the coordinate location of any voxel is implicit from its
position in the octree (and vice versa), giving octrees interesting properties for searching [Sto03]. In
short, we can find where a given voxel belongs in the tree by simple bitwise operations on its
coordinate values. Once this principle was understood, it was used in the application as the basis of
a faster octree-construction algorithm with the hope of making a faster overall system. However, this
change required the use of an additional traverse loop to build up the billboard list; this tended to
cancel out any gain, and overall performance (and effect) were found to be roughly the same between
the two versions.

Figure 5. (Top) Screenshot showing a representation of the octree structure
describing the dust cloud volume. (Bottom) Screenshot of the octree dust
system in action at 88km/h simulated car speed.

Proceedings of the Second Australian Undergraduate Students’ Computing Conference, 2004

page 21

Carr et al. Simulation and Representation of Dust Clouds

CONCLUSION AND FUTURE WORK

The compiled performance data (frames per second) of the applications is presented in Table 1.

Table 1. Comparison of application performance on the two test systems.

Performance
(FPS: low–high)

P4 2.0Ghz /
GeForce4

P4 1.3Ghz /
GeForce3

Est. Complexity
of system

Core (Reference) 450+ fps 240 fps N/A

Billboard system 200 – 400+ fps 100 – 240 fps O(n) (linear)

Particle system 120 – 400 fps 85 – 240 fps O(n)

Voxel system 25 – 450 fps 15 – 230 fps O(n6) (exp.)

Octree system v1 120 – 450+ fps 100 – 235 fps O(n)

Octree system v2 100 – 450+ fps 75 – 235 fps O(n)

Billboards based on simple particle systems have been widely (almost exclusively) used for
representing cloud effects, etc. in games because of their simplicity of implementation and fast
processing. With tuning and photorealistic textures they can provide a very good effect, though they
still have inherent drawbacks that manifest because each billboard acts as (and in reality is) an
independent entity from the rest that make up a cloud. Literal particle systems are useful for more
correctly simulating a particle cloud, but are usually too computationally-intensive to produce a good
effect and still be workable in a real-time environment.

With the volumetric systems described, an attempt was made to sever the reliance on the position
and movement of independent particles forming the shape of a dust cloud, instead representing the
cloud as a volume. In doing so we investigated the use of an octree structure to store the volume
elements in a space-efficient and ultimately time-efficient way. Proposed further work is to refine the
octree system to produce a higher-quality result. One step may be to apply some of the physics
described by [CFW00] to make the system more behaviourally accurate; another is to apply rendering
techniques such as those developed for (rain) clouds to improve the visual appearance (eg. [ND01],
[Har02]). Ultimately, the voxel cloud is still being rendered as a collection of billboards, and there
could be improvement in finding an alternate way of drawing the voxels.

REFERENCES

[CFW00] Jim X. Chen, Xiaodong Fu, and Edward J. Wegman. Real-Time Simulation of Dust
Behaviour Generated by a Fast Travelling Vehicle. ACM Transactions on Modeling and
Computer Simulation, Vol. 9, No. 2, Pages 81–104. 1999.

[Har02] Mark J. Harris. Real-Time Cloud Rendering For Games. Proceedings of Game
Developers Conference 2002. 2002.

[Hum01] Ben Humphrey. Octree Tutorial. http://www.gametutorials.com/Tutorials/OpenGL/
Octree.htm, www.GameTutorials.com. Accessed 20 August 2004. 2001.

[MDCN03] Ryoichi Mizuno, Yoshinori Dobashi, Bing-Yu Chen, and Tomoyuki Nishita. Physics
Motivated Modeling of Volcanic Clouds as a Two Fluids Model. Proceedings of the 11th
Pacific Conference on Computer Graphics and Applications (PG’03), IEEE Computer
Society. 2003.

[ND01] Tomoyuki Nishita and Yoshinori Dobashi. Modeling and Rendering of Various Natural
Phenomena Consisting of Particles. IEEE Computer Society. 2001.

[Ste96] Alexander Stevenson. Voxels and Volumetric Representation.
http://www3.telus.net/ah/voxels/voxels.htm. Accessed 20 August 2004. 1996.

[Sto03] Nilo Stolte. Octree – Overview. http://nilo.stolte.free.fr/octree.html. Accessed 20 August
2004. 2003.

Proceedings of the Second Australian Undergraduate Students’ Computing Conference, 2004

page 22

